artificial life

IEEE Symposium on Artificial Life (IEEE ALIFE)

December 6-9, 2019, Xiamen, China.

IEEE ALIFE 2019 brings together researchers working on the emerging areas of Artificial Life and Complex Adaptive Systems, aiming to understand and synthesize life-like systems and applying bio-inspired synthetic methods to other science/engineering disciplines, including Biology, Robotics, Social Sciences, among others.

Artificial Life is the study of the simulation and synthesis of living systems. In particular, this science of generalized living and life-like systems provides engineering with billions of years of design expertise to learn from and exploit through the example of the evolution of organic life on earth. Increased understanding of the massively successful design diversity, complexity, and adaptability of life is rapidly making inroads into all areas of engineering and the Sciences of the Artificial. Numerous applications of ideas from nature and their generalizations from life-as-we-know-it to life-as-it-could-be continually find their way into engineering and science.

Best Paper/Best Student Paper Awards will be sponsored by Wolfram Research, Inc.

Important dates

Paper Submissions: July 10, 2019  
Notification to Authors: Sep. 1, 2019
Final Submission: Oct. 1, 2019
Early Registration: Oct. 1, 2019


Accepted papers after peer-review will be published in the IEEE SSCI conference proceedings. Submissions will be made via the main IEEE SSCI website.


We invite submissions of high-quality contributions on a wide variety of topics relevant to the wide research areas of Artificial Life. Some sample topics of interest include, but are not limited to, the following aspects of Artificial Life:

  • Systems Biology, Astrobiology, Origins of Replicators and Life 
  • Major Evolutionary Transitions 
  • Applications in Nanotechnology, Compilable Matter, or Medicine 
  • Genetic Regulatory Systems 
  • Self-reproduction, Self-Repair, and Morphogenesis 
  • Human-Robot Interaction 
  • Robotics & Embodiment: Minimal, Adaptive, Ontogenetic and/or Social Robotics
  • Constructive Dynamical Systems and Complexity 
  • Evolvability, Heritability, and Multicellularity 
  • Information-Theoretic Methods 
  • Sensor and Actuator Evolution and Adaptation 
  • Wet and Dry Artificial Life (e.g. artificial cells; non-carbon based life) 
  • Non-Traditional Computational Media 
  • Emergence and Complexity 
  • Multiscale Robustness and Plasticity 
  • Phenotypic Plasticity & Adaptability in Scalable, Robust Growing Systems 
  • Predictive Methods for Complex Adaptive Systems and Life-like Systems 
  • Automata Networks and Cellular Automata 
  • Ethics and Philosophy of Artificial Life 
  • Co-evolution and Symbiogenesis 
  • Simulation and Visualization Tools for Artificial Life 
  • Replicator and Interaction Dynamics 
  • Network Theory in Biology and Artificial Life 
  • Synchronization and Biological Clocks 
  • Methods and Applications of Evolutionary Developmental Systems (e.g. developmental genetic-regulatory networks (DGRNs), multicellularity) 
  • Games and Generalized Biology 
  • Self-organization, Swarms and Multicellular Systems 
  • Emergence of Signaling and Communication 

Organizing Committee

Hiroki Sayama – Binghamton University, USA (chair) –
Chrystopher Nehaniv – University of Waterloo, Canada
Joseph Lizier – The University of Sydney, Australia
Stefano Nichele – Oslo Metropolitan University, Norway
Terry Bossomaier – Charles Sturt University, Australia

For more information, visit


Postgraduate course by Dr. Froese this semester

This semester Dr. Froese will teach the following course, which introduces the foundations of many of this group’s lines of research:

Agentes autónomos, sistemas sociales, y la nueva ciencia cognitiva

When: Mondays and Wednesdays, 13:00 – 14:30 (First class: 29/01/2018)
Where: Anexo del IIMAS, Circuito Escolar, Ciudad Universitaria, DF

This course will introduce ongoing debates in cognitive science about our changing understanding of the mind. Instead of being thought of as a digital computer inside the brain, mind is now widely considered to be an embodied, embedded and extended activity in the world. These ideas will be illustrated based on case studies of research in agent-based models and human-computer interfaces, with special emphasis on demonstrating how social interactions and technologies shape our mind. Students are not expected to program models nor to design interfaces, but to understand the implications of the new cognitive science and to apply them to their own research interests. The course will be taught mainly in English to better prepare students for the special terms used by leading researchers in cognitive science.

Click here for the course website.

CFP, Special session – Hybrid Life: Approaches to integrate biological, artificial and cognitive systems, ALife 2018

********** Call for Papers **********
2018 Artificial Life conference (ALife)
Tokyo, JAPAN, 23-27 July 2018 –
Special session – Hybrid Life: Approaches to integrate biological, artificial and cognitive systems

The main focus of ALife research is the study of natural systems with the goal of understanding what life is. More concretely, ALife defines ways to investigate processes that contribute to the formation and proliferation of living organisms. In this session we focus on three common approaches to tackle this investigation, proposing ways to integrate, extend and possibly improve them. More specifically we refer to: 1) the formalisation of the necessary properties for the definition of life, 2) the implementation of artificial agents, and 3) the study of the relation between life and cognition.

The 2018 Conference on Artificial Life (ALIFE 2018) – CALL FOR PAPERS

A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALife)

July 23-27, 2018
Tokyo, Japan

BEYOND A.I.: A New Epistemology for Artificial Life and Complex Systems

The ALIFE 2018 conference will be a stimulating home for a rich and diverse research community in Artificial Life and related fields from around the world, with a special emphasis on encouraging communication and building bridges between the different research threads that make Artificial Life such an exciting field. Following in the tradition of recent artificial life conferences, the meeting will also have an overall theme that reflects the global nature of the first joint conference: Beyond AI. Submissions are
welcome on all topics.

We are inviting especially contributions to solve new challenges in ALife. Since the first ALife conference in 1987, the computational landscape has been completely reshaped in terms of scale, means, capacity, and spheres of application in our society. The use of massive real-world data has now the potential to offer an important new avenue for ALife, to help us understand the nature of living systems by understanding bridges between simple idealized models and complex data-rich phenomena? An epistemology for a modern artificial life that can operate at scale and in partnership with data, but without sacrificing the complexity of the systems that we observe, has yet to be achieved. By widening the focus of artificial life, the field can avoid conventional approaches and be a source of radically new concepts, methods, models, and technologies.

We are honoured to welcome keynote speakers who include:

Rodney Brooks (iRobot, MIT, USA)
Inman Harvey (University of Sussex, UK)
Hiroshi Ishiguro (Osaka University, Japan)
David OReilly (Artist, USA)
Margaret Boden (University of Sussex, UK)
Kenneth O. Stanley (University of Central Florida, USA)
Hyejin Youn (Northwestern University, USA)


Mario Zarco graduates with honors!

Today Mario Zarco graduated with honors from UNAM’s Master’s degree in Computer Science and Engineering for his work on self-optimization in neural networks.

The title and extended abstract of his thesis are as follows:

􀀈􀀓􀀔􀀕􀀇􀀌􀀐􀀁􀀇􀀈􀀁􀀄􀀕􀀔􀀐􀀂􀀐􀀑􀀔􀀌􀀎􀀌􀀖􀀄􀀆􀀌􀀘􀀏􀀁􀀈􀀏􀀁􀀒􀀈􀀇􀀈􀀓􀀁Estudio de Auto-Optimización en Redes Neuronales de Hopfield
Mario Alberto Zarco López

Las redes neuronales de Hopfield de tiempo discreto, cuya dinámica presentan múltiples atractores de punto fijo, han sido ampliamente usadas en dos casos: (1) memoria asociativa, basada en aprender un conjunto de patrones de entrenamiento los cuales son representados por atractores, y (2) optimización, basado en representar un problema de satisfaccion de restricciones con la topología de la red de tal forma que los atractores sean soluciones de ese problema. En el ultimo caso, la función de energía de la red debe tener la misma forma que la función a ser optimizada, de modo que los m´ınimos de la primera también sean mínimos de la segunda. Aunque se ha demostrado que los atractores de baja energía tienen un amplio domino de atracción, la red usualmente queda atrapada en mínimos locales. Recientemente se demostró que las redes de Hopfield de tiempo-discreto pueden converger en atractores globalmente óptimos ampliando las mejores cuencas de atracción. La red combina el aprendizaje de sus propios atractores usando aprendizaje Hebbiano y la aleatorizacion de los estados neuronales una vez que la red ha reforzada su configuración actual.

The 15th International Conference on the Simulation of Adaptive Behavior (SAB2018)

The 15th International Conference on the Simulation of Adaptive Behavior (SAB2018)
14-17 August 2018, Frankfurt, Germany

* Keynote speakers *

Auke Jan Ijspeert, Swiss Federal Institute of Technology (EPFL), Switzerland
Jan Peters, Darmstadt University of Technology, Germany
Koh Hosoda, Osaka University, Japan
Tom Froese, National Autonomous University of Mexico, Mexico

CFP: 6th Int. Conf. on the Theory and Practice of Natural Computing


Prague, Czech Republic

December 18-20, 2017

Organized by:

Institute of Computer Science
Czech Academy of Sciences

Faculty of Mathematics and Physics
Charles University

Research Group on Mathematical Linguistics (GRLMC)
Rovira i Virgili University


TPNC is a conference series intending to cover the wide spectrum of computational principles, models and techniques inspired by information processing in nature. TPNC 2017 will reserve significant room for young scholars at the beginning of their career and particular focus will be put on methodology. The conference aims at attracting contributions to nature-inspired models of computation, synthesizing nature by means of computation, nature-inspired materials, and information processing in nature.


TPNC 2017 will take place in Prague, whose historic centre is UNESCO World Heritage Site and which is home to famous attractions like the Prague Castle, the Charles Bridge, etc. The venue will be:

Faculty of Mathematics and Physics
Charles University
Ke Karlovu 3
121 16 Praha 2


EON Workshop

Tom Froese and Jorge Campos Bravo will participate in the following workshop at the end of their stay Earth-Life Science Institute in Tokyo this summer.

EON Workshop: Sensors, Motors and Behaviour at the Origin of Life

EON will hold an international workshop at ELSI on July 26-28, 2017.

Organizers: Matthew Egbert 1  ,   Martin Hanczyc 2
Lecturer, University of Auckland, NZ                    
Principal Investigator, Centre for Integrative Biology, University of Trento, Italy

Venue: ELSI Hall in ELSI-1 bldg., Tokyo Institute of Technology, Tokyo, Japan.

Title: Sensors, Motors and Behaviour at the Origin of Life


More information can be found on the EON workshop website.

CFP: ECAL 2017


“Artificial Life and the scientific method: Create, play, experiment, discover”

The ECAL 2017 Organizing Committee would like to cordially invite you to submit your work to the 14th European Conference on Artificial Life (ECAL 2017), taking place on the LyonTech Campus in Lyon, France, 4-8 September 2017.

*  I M P O R T A N T   D A T E S  *

Paper submission deadline:  9th April, 2017
Notification of Acceptance:  12th May, 2017
Camera-Ready due:                 9th June, 2017
Main Conference convenes:  4-8 September, 2017

Contact email for queries: