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Abstract

Hopfield neural networks can exhibit many different attractors of which most are local optima.

Hopfield networks are applied mainly in two cases: associative memory (Hopfield, 1982) based on

a training set of patterns, and optimization (Hopfield & Tank, 1985) based on a predefined weight

space which represents a constraints satisfaction problem. Watson, Buckley, and Mills (2011)

have demonstrated that the discrete-time Hopfield network process of learning its own attractors

– hence ‘self-modeling’ its previous dynamic - enlarges the basin of attraction of globally optimal

attractors - hence leading to self-optimization of network connectivity. However, this approach is

limited to networks with symmetric and self-recurrent connections. We are interested in knowing

which topological constraints can be relaxed. Therefore, the self-modeling process is applied to

a continuous-time Hopfield neural network with asymmetric and self-recurrent connections.

Introduction

The self-modeling process (SMP) is grounded in two properties of the Hopfield
neural network. First, there exists a positive correlation between the width and
depth of a basin of attraction (Kryzhanovsky & Kryzhanovsky, 2008). Second,
associative memory allows generalizing over patterns learned. Learning is able
to cause a simple form of generalization producing attractors which are new
combinations of similar patterns. These spurious attractors are possible solutions
of the original optimization problem. The reinforcement of an attractor at the
same time can reinforce attractors with lower energy given that subpatterns that
are common to many local optima can be common to superior optima (Watson
et al., 2011). Thus, better attractors are reinforced more frequently due to
learning, hence increasing the size of the basins of attraction, even if some of
them have not been visited previously.

Watson et al. (2011) use the following iterative algorithm: (1) the network states
are initialized randomly, (2) the states are updated so as to the network con-
verges into an attractor, and (3) after reaching the attractor, small changes in
the weights are applied using Hebbian learning. Watson and colleagues point out
three conditions for the process to work: (C1) the initial dynamics of the system
exhibit multiple point attractors; (C2) the system configurations are repeatedly
relaxed from different random initial conditions such that the system samples
many different attractors on a timescale where connections change slowly; (C3)
the system spends most of its time at attractors. They mention also two re-
quirements: (R1) the learning rate must be small; (R2) the time of convergence
into attractors during relaxation periods must be less than τ .

Continuous-time Hopfield Neural Network

A continuous-time Hopfield neural network is a fully-connected recurrent neural
network, usually with symmetric connection matrix Ω(t), and with self-recurrent
connections. The network consists of N continuous states, si , which are updated
according to the following equation (Beer, 1995):

τi ṡi = −si +
N∑
j=1

ωijσ(gj(sj + θj))

where τi is the time constant of neuron i , ωij is the weight between neuron i
and j , with ωij ∈ [−1, 1], gj is the gain of neuron j , σ is the following activation
function (Hoinville, Siles, & Hénaff, 2011):

σ(x) =
2

1 + ex
− 1,

and θj is the next bias term (Golos, Jirsa, & Daucé, 2016):

θi =
1

2

N∑
j=1

ωij.

This term allows the continuous version of the Hopfield network to satisfy con-
dition (C1).
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We use the following algorithm: (1) the states configuration is initially random-
ized such that R = [−1, 1]N, (2) the network is relaxed, during τ time steps,
from a random configuration into an attractor using the weights modified due
to learning, (3) from this last states configuration, the network is relaxed again,
during τ time steps, into an attractor using the original weights, and (4) after
finalizing the second relaxation period, small changes in the weights are applied
using the next Hebbian rule:

ωij(t + 1) = θLTF [ωij(t) + δVi(t)Vj(t)]

for all ωij , where δ is the learning rate, Vj = σ(gj(sj + θj)), and θLTF is a linear
threshold function. So, if x > 0 then θLTF(x) = 1; if x < 0 then θLTF(x) = −1;
else θLTF(x) = x .

An energy function for a continuous-time Hopfield network was defined by Hop-
field (1984). The original energy, EO, is used to compute the degree to which a
states configuration obtained by the SMP successfully resolves the original con-
straints. It is calculated with the states configuration at the end of the second
relaxation period, HO(t), that is

EO(H(t),Ω(t = 0)) = −1

2

N∑
ij

ωijVi(t)Vj(t) +
N∑
i

∫ Vi(t)

0

σ−1(ξ)dξ

where αij ≡ ωij(t = 0). If the process works properly, the energy of the
attractors will be lower over time. Finally, (C1), (C2), (C3), (R1), and (R2),
are still mandatory.

Results

Symmetric (left) and asymmetric (right) random constraints.

1-1000 energy of attractors without SMP; 1001 - 2000 energy of attractors during SMP.

N = 30, τ = 1000, δ = 0.0001, gi = 1

Symmetric (left) and asymmetric (right) modular constraints.

1-1000 energy of attractors without SMP; 1001 - 2000 energy of attractors during SMP.

N = 30, τ = 1000, δ = 0.0001, gi = 1
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