neural networks

Self-modeling in Hopfield Neural Networks with Continuous Activation Function

Finally a large part of Mario’s thesis on unsupervised learning in artificial neural networks has been published and is available open access:

Self-modeling in Hopfield Neural Networks with Continuous Activation Function

Mario Zarco and Tom Froese

Hopfield networks can exhibit many different attractors of which most are local optima. It has been demonstrated that combining states randomization and Hebbian learning enlarges the basin of attraction of globally optimal attractors. The procedure is called self-modeling and it has been applied in symmetric Hopfield networks with discrete states and without self-recurrent connections. We are interested in knowing which topological constraints can be relaxed. So, the self-modeling process is tested in asymmetric Hopfield networks with continuous states and self-recurrent connections. The best results are obtained in networks with modular structure.

Mario Zarco graduates with honors!

Today Mario Zarco graduated with honors from UNAM’s Master’s degree in Computer Science and Engineering for his work on self-optimization in neural networks.

The title and extended abstract of his thesis are as follows:

􀀈􀀓􀀔􀀕􀀇􀀌􀀐􀀁􀀇􀀈􀀁􀀄􀀕􀀔􀀐􀀂􀀐􀀑􀀔􀀌􀀎􀀌􀀖􀀄􀀆􀀌􀀘􀀏􀀁􀀈􀀏􀀁􀀒􀀈􀀇􀀈􀀓􀀁Estudio de Auto-Optimización en Redes Neuronales de Hopfield
􀀏􀀈􀀕􀀒􀀐􀀏􀀄􀀍􀀈􀀓􀀁􀀇􀀈􀀁􀀋􀀐􀀑􀀉􀀌􀀈􀀍􀀇􀀁
Mario Alberto Zarco López

Las redes neuronales de Hopfield de tiempo discreto, cuya dinámica presentan múltiples atractores de punto fijo, han sido ampliamente usadas en dos casos: (1) memoria asociativa, basada en aprender un conjunto de patrones de entrenamiento los cuales son representados por atractores, y (2) optimización, basado en representar un problema de satisfaccion de restricciones con la topología de la red de tal forma que los atractores sean soluciones de ese problema. En el ultimo caso, la función de energía de la red debe tener la misma forma que la función a ser optimizada, de modo que los m´ınimos de la primera también sean mínimos de la segunda. Aunque se ha demostrado que los atractores de baja energía tienen un amplio domino de atracción, la red usualmente queda atrapada en mínimos locales. Recientemente se demostró que las redes de Hopfield de tiempo-discreto pueden converger en atractores globalmente óptimos ampliando las mejores cuencas de atracción. La red combina el aprendizaje de sus propios atractores usando aprendizaje Hebbiano y la aleatorizacion de los estados neuronales una vez que la red ha reforzada su configuración actual.
(more…)

Poster presentations at the C3

On June 8 members if our group participated in an event at the Centre for the Sciences of Complexity (C3) called: “C3: Un Centro Transversal para la UNAM”.

We created a number of posters about our current work in progress:

CFP: 6th Int. Conf. on the Theory and Practice of Natural Computing

***************************************************************************
6th INTERNATIONAL CONFERENCE ON THE THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2017)

Prague, Czech Republic

December 18-20, 2017

Organized by:

Institute of Computer Science
Czech Academy of Sciences

Faculty of Mathematics and Physics
Charles University

Research Group on Mathematical Linguistics (GRLMC)
Rovira i Virgili University

http://grammars.grlmc.com/TPNC2017/
***************************************************************************

AIMS:

TPNC is a conference series intending to cover the wide spectrum of computational principles, models and techniques inspired by information processing in nature. TPNC 2017 will reserve significant room for young scholars at the beginning of their career and particular focus will be put on methodology. The conference aims at attracting contributions to nature-inspired models of computation, synthesizing nature by means of computation, nature-inspired materials, and information processing in nature.

VENUE:

TPNC 2017 will take place in Prague, whose historic centre is UNESCO World Heritage Site and which is home to famous attractions like the Prague Castle, the Charles Bridge, etc. The venue will be:

Faculty of Mathematics and Physics
Charles University
Ke Karlovu 3
121 16 Praha 2

SCOPE:
(more…)

CFP: IEEE ALIFE 2017

IEEE ALIFE 2017

2017 IEEE Symposium on Artificial Life
http://www.ele.uri.edu/ieee-ssci2017/ALIFE.htm

as part of

2017 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2017)
Hilton Hawaiian Village Resort, Honolulu, Hawaii
Nov. 27-Dec. 1, 2017
http://www.ieee-ssci.org

Call for papers

Artificial Life is the study of the simulation and synthesis of living systems. In particular, this science of generalized living and life-like systems provides engineering with billions of years of design expertise to learn from and exploit through the example of the evolution of organic life on earth. Increased understanding of the massively successful design diversity, complexity, and adaptability of life is rapidly making inroads into all areas of engineering and the Sciences of the Artificial. Numerous applications of ideas from nature and their generalizations from life-as-we-know-it to life-as-it-could-be continually find their way into engineering and science.

IEEE ALIFE 2017 brings together researchers working on the emerging areas of Artificial Life and Complex Adaptive Systems, aiming to understand and synthesize life-like systems and applying bio-inspired synthetic methods to other science/engineering disciplines, including Biology, Robotics, Social Sciences, among others.
(more…)

ALIFE XV Late Breaking Abstract

Can we incorporate sleep-like interruptions into evolutionary robotics?

Mario A. Zarco-Lopez and Tom Froese

Traditional use of Hopfield networks can be divided into two main categories: (1) constraint satisfaction based on predefined a weight space, and (2) model induction based on a training set of patterns. Recently, Watson et al. (2011) have demonstrated that combining these two aspects, i.e. by inducing a model of the network’s attractors by applying Hebbian learning after constraint satisfaction, can lead to self-optimization of network connectivity. A key element of their approach is a repeated randomized reset and relaxation of network state, which has been interpreted as similar to the function of sleep (Woodward, Froese, & Ikegami, 2015). This perspective might give rise to an alternative “wake-sleep” algorithm (Hinton, Dayan, Frey, & Neal, 1995). All of this research, however, has taken place with isolated artificial neural networks, which goes against decades of work on situated robotics (Cliff, 1991). We consider the challenges involved in extending this work on sleep-like self-optimization to the dynamical approach to cognition, in which behavior is seen as emerging from the interactions of brain, body and environment (Beer, 2000).

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91-99.

Cliff, D. (1991). Computational neuroethology: A provisional manifesto. In J.-A. Meyer & S. W. Wilson (Eds.), From Animals to Animats (pp. 29-39). MIT Press.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The “wake-sleep” algorithm for unsupervised neural networks. Science, 268, 1158-1161.

Watson, R. A., Buckley, C. L., & Mills, R. (2011). Optimization in “self-modeling” complex adaptive systems. Complexity, 16(5), 17-26.

Woodward, A., Froese, T., & Ikegami, T. (2015). Neural coordination can be enhanced by occasional interruption of normal firing patterns: A self-optimizing spiking neural network model. Neural Networks, 62, 39-46.